
The future of models in testing
Safely crash in virtual space

© Sioux 2023 | Public 1

Dirk CoppelmansBryan Bakker



Bryan Bakker
§ Test Architect

§ Tutor of several test related courses

§ Domains: medical systems, 
professional security systems, 
semicon-industry, electron 
microscopy, material handling

§ Specialties: test automation, 
integration testing, design for 
testability, reliability testing

2© Sioux 2023 | Public

§ Test Architect

§ Test strategy, infrastructure & 
automation

§ Consumer products, medical devices 
& industrial machinery

§ Quote: “There is always one more 
bug”

Dirk Coppelmans



3© Sioux 2023 | Public



4

The facts

Annual turnover
€ 100,000,000

Customer satisfaction
8

Employees
1100+

Employee satisfaction
8 0

200

400

600

800

1000

1200

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Number of employees

© Sioux 2023 | Public



The future of models in testing

1. Evolution of software testing

2. Models in testing

3. Promises for the future

5© Sioux 2023 | Public



Evolution of software testing

6© Sioux 2023 | Public



7© Sioux 2023 | Public

Evolution of software testing



8© Sioux 2023 | Public

Evolution of software testing

Manual



9© Sioux 2023 | Public

Evolution of software testing

Manual Automated

!



10© Sioux 2023 | Public

Evolution of software testing

Manual Automated

!

Keyword



11© Sioux 2023 | Public

Evolution of software testing

Manual Automated

!

Keyword

?



Evolution of software testing –
Compare to SW development
§ Increase in use of formal models 
§ Originates from research & universities
§ No longer limited to safety and reliability critical environments, like

automotive and aviation
§ Applied to manage complexity

12© Sioux 2023 | Public

Type Tools
System design • ASD / Dezyne (Verum)

• mCRL2 (verification engine for ASD/Dezyne)
• Cocotec

Interface • Pact
• ComMA



Model Driven Development (MDD) - Model

13© Sioux 2023 | Public

Model:
- Precise
- Complete
- Correct



Model:
- Precise
- Complete
- Correct

Formal model 
and verification

Generate 
formal model

Design 
errors

MDD – Model verification

14© Sioux 2023 | Public



MDD – Code generation

15© Sioux 2023 | Public

Model:
- Precise
- Complete
- Correct

Formal model 
and verification

Source code:
- Java
- MISCRA C
- C++
- C#

Generate 
formal model

Design 
errors

Generate defect 
free source code 

from verified model

Guaranteed 
equivalence



MDD – Experiences

§ Quality of generated code very high

§ Especially reliability and stability

§ Functionality can still be wrong (also wrong in model)

§ No more programming errors like deadlocks, livelocks, starvation, race-conditions

§ Integration with other parts still important

References:
§ R. van Beusekom, J.F. Groote, P. Hoogendijk, R. Howe, W. Wesselink, R. Wieringa, T.A.C. Willemse. Formalising the Dezyne Modelling Language in mCRL2 
§ www.verum.com

16© Sioux 2023 | Public

http://www.verum.com/


Models in testing

17© Sioux 2023 | Public



Interface modeling – Contract testing

§ Consumer driven contracts
§ In micro-service architecture
§ Useful for interface definition
§ True power: interface evolution
§ Tool support e.g.: Pact Broker, Pactflow, Spring Cloud Contract, 

Schemathesis

References:
§ https://pact.io/
§ https://pactflow.io/
§ https://spring.io/projects/spring-cloud-contract
§ https://github.com/schemathesis/schemathesis

18© Sioux 2023 | Public

https://pact.io/
https://pactflow.io/
https://spring.io/projects/spring-cloud-contract
https://github.com/schemathesis/schemathesis


Contract

§ Consumer: client that requires data
§ Provider: service that provides data

§ Contract (aka pact): collection of interactions:
§ expected request: what consumer needs to send to provider
§ minimal expected response: elements provider needs to return

19© Sioux 2023 | Public

https://pact.io/

https://pact.io/


Consumer side testing

1. Using the Pact DSL, the expected request and response are registered with the mock service.
2. The consumer test code fires a real request to a mock provider (created by the Pact 

framework).
3. The mock provider compares the actual request with the expected request, and emits the 

expected response if the comparison is successful.
4. The consumer test code confirms that the response was correctly understood

20© Sioux 2023 | Public

https://pact.io/

https://pact.io/


Provider side testing

§ In provider verification, each request is sent to the provider, and the actual response it generates 
is compared with the minimal expected response described in the consumer test.

§ Provider verification passes if each request generates a response that contains at least the data 
described in the minimal expected response.

21© Sioux 2023 | Public

https://pact.io/

https://pact.io/


Combination

If we pair the test and verification process for each interaction, the 
contract between the consumer and provider is fully tested without 
having to spin up the services together.

22© Sioux 2023 | Public

https://pact.io/

https://pact.io/


ComMA
Component Modeling and Analysis

§ Advanced interface modeling

§ Developed by Philips Healthcare + TNO-ESI (now open source)

§ Model consists of: 
§ Signature
§ Behavior
§ Time & Data constraints

References:
§ https://projects.eclipse.org/projects/technology.comma
§ https://esi.nl/research/output/tools/comma

23© Sioux 2023 | Public

§ Generated:
§ Visualization
§ Documentation
§ Interface code
§ Runtime Monitoring and interface conformance
§ Test cases 

https://projects.eclipse.org/projects/technology.comma
https://esi.nl/research/output/tools/comma


Design & Interface models

§ MDD Design models are by far flawless
§ Often only complex+critical parts of the system modeled

§ Interface models are
§ Rigorous
§ Valuable for interface evolution
§ Limited to interfaces

§ By modeling behavior, new test possibilities arise

24© Sioux 2023 | Public



25© Sioux 2023 | Public

Evolution of software testing

Manual Automated

!

Keyword

?



26© Sioux 2023 | Public

Evolution of software testing

Manual Automated

!

Keyword Model based



MBT Definition *)

Model based testing (MBT) is 

automated test generation and execution 

based on an abstract 

behavior model

27© Sioux 2023 | Public

*) As used by Sioux



Developing a behavior model

1. Derive the behavior model from the requirements

2. Construct a behavior model based on collected field data 

(process mining) 

28© Sioux 2023 | Public



Derive from the
requirements

29© Sioux 2023 | Public

Requirements

TestDevelopment



Derive from the
requirements

30© Sioux 2023 | Public

Requirements

TestDevelopment

Behavioral model

Extract Review

Improve



Derive from the
requirements

31© Sioux 2023 | Public

Requirements

TestDevelopment

Behavioral model

Extract Review

Improve

Product

Develop



Derive from the
requirements

32© Sioux 2023 | Public

Requirements

TestDevelopment

Behavioral model

Extract Review

Improve

Product

Develop

þý
Test execution

Generate testsBuild product



Derive from the
requirements

33© Sioux 2023 | Public

Requirements

TestDevelopment

Behavioral model

Extract Review

Improve

Product

Develop

þý
Test execution

Generate testsBuild product

Fix product
Fi

x 
re

qu
ire

m
en

ts
Fix model



The next best thing –
Developing a behavior model

1. Derive the behavior model from the requirements

2. Construct a behavior model based on collected field data 

(process mining) 

34© Sioux 2023 | Public



Process mining

35© Sioux 2023 | Public



Process mining

36© Sioux 2023 | Public

Development

Product

Develop

Requirements

Test



Process mining

37© Sioux 2023 | Public

Development

Product

Develop

Requirements

Test

Log

Behavioral model

Data
Mine

Extract



Process mining

38© Sioux 2023 | Public

Development

Product

Develop

Requirements

Test

Log

Behavioral model

Data
Mine

Extract

Review

Improve



Process mining

39© Sioux 2023 | Public

Development

Product

Develop

Requirements

Test

Log

Behavioral model

Data
Mine

Extract

Review

Improve

þý
Test execution

Generate testsBuild product



40© Sioux 2023 | Public



41© Sioux 2023 | Public

If MBT is so promising, why is not everyone using it?

It has been around for >25 years



Challenges of MBT - Complexity

§ Stakeholders have different expectations of MBT
§ Shorter leadtime vs. higher quality

§ Modeling is a specialized skill
§ Some testers find coding hard… modeling can be even harder

§ Not every (part of a) system is suited for modeling
§ Tooling landscape seems big… but:

§ Mostly GUI tools... Avoid automated testing via GUI
§ Most tools do not support non-determinism / uncertainty

References:
§ https://www.axini.com/en/products/model-based-testing/
§ https://github.com/TorXakis/TorXakis

42© Sioux 2023 | Public

Founded in ioco-testing theory
Vision of 

https://www.axini.com/en/products/model-based-testing/
https://github.com/TorXakis/TorXakis


Challenges of MBT – State space explosion

§ Expectations vs reality
§ Abstraction level of models

Unclear scope of models leads to wrong abstraction level of models:
§ too abstract : model has limited to no added value
§ too detailed : high costs, state space explosion

§ MBT applied on too many areas à high costs, disappointing benefit
§ Apply only for high-risk areas
§ Focus on e.g. performance, reliability

43© Sioux 2023 | Public



Challenges of MBT – State space explosion
Dealing with state space explosion

Scope Focus on components / subsystems 
instead of the entire system

a) simple models for different test purposes
b) based on risk analysis

Abstraction Focus on behavior, instead of design
a) limit number of data values (use S, M, L iso range 0-1000)
b) model the behavior instead of the design

Reference:
§ Groote, Kouters, Osaiweran. Specification guidelines to avoid the state space explosion problem

44© Sioux 2023 | Public



Challenges of MBT – State space explosion
Dealing with state space explosion

§ model the behavior instead of the design

Reference:
§ Jan Tretmans – Radboud University Nijmegen – Model Based Testing

45© Sioux 2023 | Public



Challenges of MBT – State space explosion
Different models for different purposes

46© Sioux 2023 | Public



Challenges of MBT – State space explosion
Different models for different purposes

47© Sioux 2023 | Public

û



48© Sioux 2023 | Public

Challenges of MBT – State space explosion
Different models for different purposes



§ Don’t include details in the model that are (or should be) 
covered in lower levels à abstract models

§ MBT does not replace unit tests
§ Applying MBT on integration level 
§ Do not repeat checks à will “relieve” system 

level
§ Minimize number of testcases on upper levels

§ Expensive to define, even more expensive to maintain
§ Slow execution
§ Complex / expensive / scarce environments
§ Hard analysis of failures

… reduces dependence on 
expensive high-level testing

Inexpensive low
level testing…

Quality above…

… requires quality 
below

Unit
Test

Integration
Test

System
Test

MBT helps to align levels in test pyramid

49© Sioux 2023 | Public

References:
• Round Earth Test Strategy - Satisfice, Inc.
• Test trophy - Kent C. Dodds



Experience

§ Modeling both provided AND required interfaces enables 
automated testing of both happy and non-happy flow

§ MBT platform generates a lot of test variations, 
not straightforward with BDD approach

§ Modeling gives you early feedback on interfaces and requirements 
(even before implementation) à might be perceived as delay

§ Projects using MBT have less issues in later test phases

§ Test sub-systems in isolation without the need for simulators

§ Load on testbenches and proto’s is reduced

50© Sioux 2023 | Public

provided interfaces

required interfaces



Experience

§ Opportunities: 
§ Green field
§ Bigger redesigns / refactoring
§ Interface migrations
§ Increase test coverage
§ Requirements elicitation

§ Experience shows that teams who model:
§ Deliver higher quality
§ Have higher productivity

51© Sioux 2023 | Public



Promises for the future

52© Sioux 2023 | Public



Promises for the future – Digital twins

53© Sioux 2022 | Public



Promises for the future – Digital twins

54© Sioux 2022 | Public



Promises for the future – Digital twins

55© Sioux 2022 | Public



Promises for the future – Digital twins

56© Sioux 2022 | Public

Environment model

Tesla control software

Hardware simulators

Test



Promises for the future – Digital twins

57© Sioux 2022 | Public

Environment model

Tesla control software

Hardware simulators

Test

• Increase test coverage
• Identify operational profiles

• Statistics for risk analysis
• Identify behavior models



Promises for the future – Digital twins

58© Sioux 2022 | Public

Environment model

Tesla control software

Hardware simulators

Test

Improve simulators based on
• Influence of wear and tear
• Environment circumstances

• Increase test coverage
• Identify operational profiles

• Statistics for risk analysis
• Identify behavior models



Promises for the future – Digital twins

59© Sioux 2022 | Public

Environment model

Tesla control software

Hardware simulators

Test

Increase environment variations

Improve simulators based on
• Influence of wear and tear
• Environment circumstances

• Increase test coverage
• Identify operational profiles

• Statistics for risk analysis
• Identify behavior models



Promises for the future – Digital twins

60© Sioux 2022 | Public

Environment model

Tesla control software

Hardware simulators

Test

Improve simulators based on
• Influence of wear and tear
• Environment circumstances

• Increase test coverage
• Identify operational profiles

• Statistics for risk analysis
• Identify behavior models

FIL: Field in the loop testing

Increase environment variations



Future? - Iterating in virtual space

§ Growing use of digital twins

§ Fully virtual target environment
§ Including autonomous driving
§ Other cars (V2V)
§ Weather conditions
§ Pedestrians / bikes
§ V2I communication
§ … V2X

§ Thousands of hours of driving, 
tested within seconds in CI/CD cycle

à Modeling the known

61© Sioux 2023 | Public

The Magic Roundabout, Swindon, England



Future? – Use of machine learning

§ Autonomous driving should be able 
to handle the unknown

§ Improve virtual environment with 
data mining
§ Actual info from the field
§ E.g. Pedestrians / other cars not

behaving as expected
§ Identifying new unknown scenarios

à Modeling the unkown (and make it known)

62© Sioux 2023 | Public



Erlkönig (Camouflaged prototype)

63© Sioux 2023 | Public

Future? – Soon, this is not needed anymore…?



64

Questions?

The Magic Roundabout, Swindon, England

bryan.bakker@sioux.eu
dirk.coppelmans@sioux.eu


