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Bryan Bakker
§ Test Architect

§ Tutor of several test related courses

§ Domains: medical systems, 
professional security systems, 
semicon-industry, electron 
microscopy, material handling

§ Specialties: test automation, 
integration testing, design for 
testability, reliability testing
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§ Test Architect

§ Test strategy, infrastructure & 
automation

§ Consumer products, medical devices 
& industrial machinery

§ Quote: “There is always one more 
bug”

Dirk Coppelmans
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The facts

Annual turnover
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The future of models in testing

1. Evolution of software testing

2. Models in testing

3. Promises for the future
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Evolution of software testing
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Evolution of software testing
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Evolution of software testing

Manual
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Evolution of software testing
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Evolution of software testing –
Compare to SW development
§ Increase in use of formal models 
§ Originates from research & universities
§ No longer limited to safety and reliability critical environments, like

automotive and aviation
§ Applied to manage complexity
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Type Tools
System design • ASD / Dezyne (Verum)

• mCRL2 (verification engine for ASD/Dezyne)
• Cocotec

Interface • Pact
• ComMA



Model Driven Development (MDD) - Model
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Model:
- Precise
- Complete
- Correct



Model:
- Precise
- Complete
- Correct

Formal model 
and verification

Generate 
formal model

Design 
errors

MDD – Model verification
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MDD – Code generation
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Model:
- Precise
- Complete
- Correct

Formal model 
and verification

Source code:
- Java
- MISCRA C
- C++
- C#

Generate 
formal model

Design 
errors

Generate defect 
free source code 

from verified model

Guaranteed 
equivalence



MDD – Experiences

§ Quality of generated code very high

§ Especially reliability and stability

§ Functionality can still be wrong (also wrong in model)

§ No more programming errors like deadlocks, livelocks, starvation, race-conditions

§ Integration with other parts still important

References:
§ R. van Beusekom, J.F. Groote, P. Hoogendijk, R. Howe, W. Wesselink, R. Wieringa, T.A.C. Willemse. Formalising the Dezyne Modelling Language in mCRL2 
§ www.verum.com
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http://www.verum.com/


Models in testing
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Interface modeling – Contract testing

§ Consumer driven contracts
§ In micro-service architecture
§ Useful for interface definition
§ True power: interface evolution
§ Tool support e.g.: Pact Broker, Pactflow, Spring Cloud Contract, 

Schemathesis

References:
§ https://pact.io/
§ https://pactflow.io/
§ https://spring.io/projects/spring-cloud-contract
§ https://github.com/schemathesis/schemathesis
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https://pact.io/
https://pactflow.io/
https://spring.io/projects/spring-cloud-contract
https://github.com/schemathesis/schemathesis


Contract

§ Consumer: client that requires data
§ Provider: service that provides data

§ Contract (aka pact): collection of interactions:
§ expected request: what consumer needs to send to provider
§ minimal expected response: elements provider needs to return
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https://pact.io/

https://pact.io/


Consumer side testing

1. Using the Pact DSL, the expected request and response are registered with the mock service.
2. The consumer test code fires a real request to a mock provider (created by the Pact 

framework).
3. The mock provider compares the actual request with the expected request, and emits the 

expected response if the comparison is successful.
4. The consumer test code confirms that the response was correctly understood
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https://pact.io/

https://pact.io/


Provider side testing

§ In provider verification, each request is sent to the provider, and the actual response it generates 
is compared with the minimal expected response described in the consumer test.

§ Provider verification passes if each request generates a response that contains at least the data 
described in the minimal expected response.
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https://pact.io/

https://pact.io/


Combination

If we pair the test and verification process for each interaction, the 
contract between the consumer and provider is fully tested without 
having to spin up the services together.
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https://pact.io/

https://pact.io/


ComMA
Component Modeling and Analysis

§ Advanced interface modeling

§ Developed by Philips Healthcare + TNO-ESI (now open source)

§ Model consists of: 
§ Signature
§ Behavior
§ Time & Data constraints

References:
§ https://projects.eclipse.org/projects/technology.comma
§ https://esi.nl/research/output/tools/comma
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§ Generated:
§ Visualization
§ Documentation
§ Interface code
§ Runtime Monitoring and interface conformance
§ Test cases 

https://projects.eclipse.org/projects/technology.comma
https://esi.nl/research/output/tools/comma


Design & Interface models

§ MDD Design models are by far flawless
§ Often only complex+critical parts of the system modeled

§ Interface models are
§ Rigorous
§ Valuable for interface evolution
§ Limited to interfaces

§ By modeling behavior, new test possibilities arise
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MBT Definition *)

Model based testing (MBT) is 

automated test generation and execution 

based on an abstract 

behavior model
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*) As used by Sioux



Developing a behavior model

1. Derive the behavior model from the requirements

2. Construct a behavior model based on collected field data 

(process mining) 
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Derive from the
requirements
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Requirements

TestDevelopment



Derive from the
requirements
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Derive from the
requirements

31© Sioux 2023 | Public

Requirements

TestDevelopment

Behavioral model

Extract Review

Improve

Product

Develop



Derive from the
requirements
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Derive from the
requirements

33© Sioux 2023 | Public

Requirements

TestDevelopment

Behavioral model

Extract Review

Improve

Product

Develop

þý
Test execution

Generate testsBuild product

Fix product
Fi

x 
re

qu
ire

m
en

ts
Fix model



The next best thing –
Developing a behavior model

1. Derive the behavior model from the requirements

2. Construct a behavior model based on collected field data 

(process mining) 
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Process mining
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Process mining
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Process mining
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Process mining
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Process mining

39© Sioux 2023 | Public

Development

Product

Develop

Requirements

Test

Log

Behavioral model

Data
Mine

Extract

Review

Improve

þý
Test execution

Generate testsBuild product



40© Sioux 2023 | Public



41© Sioux 2023 | Public

If MBT is so promising, why is not everyone using it?

It has been around for >25 years



Challenges of MBT - Complexity

§ Stakeholders have different expectations of MBT
§ Shorter leadtime vs. higher quality

§ Modeling is a specialized skill
§ Some testers find coding hard… modeling can be even harder

§ Not every (part of a) system is suited for modeling
§ Tooling landscape seems big… but:

§ Mostly GUI tools... Avoid automated testing via GUI
§ Most tools do not support non-determinism / uncertainty

References:
§ https://www.axini.com/en/products/model-based-testing/
§ https://github.com/TorXakis/TorXakis
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Founded in ioco-testing theory
Vision of 

https://www.axini.com/en/products/model-based-testing/
https://github.com/TorXakis/TorXakis


Challenges of MBT – State space explosion

§ Expectations vs reality
§ Abstraction level of models

Unclear scope of models leads to wrong abstraction level of models:
§ too abstract : model has limited to no added value
§ too detailed : high costs, state space explosion

§ MBT applied on too many areas à high costs, disappointing benefit
§ Apply only for high-risk areas
§ Focus on e.g. performance, reliability
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Challenges of MBT – State space explosion
Dealing with state space explosion

Scope Focus on components / subsystems 
instead of the entire system

a) simple models for different test purposes
b) based on risk analysis

Abstraction Focus on behavior, instead of design
a) limit number of data values (use S, M, L iso range 0-1000)
b) model the behavior instead of the design

Reference:
§ Groote, Kouters, Osaiweran. Specification guidelines to avoid the state space explosion problem

44© Sioux 2023 | Public



Challenges of MBT – State space explosion
Dealing with state space explosion

§ model the behavior instead of the design

Reference:
§ Jan Tretmans – Radboud University Nijmegen – Model Based Testing
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Challenges of MBT – State space explosion
Different models for different purposes
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Challenges of MBT – State space explosion
Different models for different purposes
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Challenges of MBT – State space explosion
Different models for different purposes



§ Don’t include details in the model that are (or should be) 
covered in lower levels à abstract models

§ MBT does not replace unit tests
§ Applying MBT on integration level 
§ Do not repeat checks à will “relieve” system 

level
§ Minimize number of testcases on upper levels

§ Expensive to define, even more expensive to maintain
§ Slow execution
§ Complex / expensive / scarce environments
§ Hard analysis of failures

… reduces dependence on 
expensive high-level testing

Inexpensive low
level testing…

Quality above…

… requires quality 
below

Unit
Test

Integration
Test

System
Test

MBT helps to align levels in test pyramid
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References:
• Round Earth Test Strategy - Satisfice, Inc.
• Test trophy - Kent C. Dodds



Experience

§ Modeling both provided AND required interfaces enables 
automated testing of both happy and non-happy flow

§ MBT platform generates a lot of test variations, 
not straightforward with BDD approach

§ Modeling gives you early feedback on interfaces and requirements 
(even before implementation) à might be perceived as delay

§ Projects using MBT have less issues in later test phases

§ Test sub-systems in isolation without the need for simulators

§ Load on testbenches and proto’s is reduced

50© Sioux 2023 | Public

provided interfaces

required interfaces



Experience

§ Opportunities: 
§ Green field
§ Bigger redesigns / refactoring
§ Interface migrations
§ Increase test coverage
§ Requirements elicitation

§ Experience shows that teams who model:
§ Deliver higher quality
§ Have higher productivity
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Promises for the future
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Promises for the future – Digital twins
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Promises for the future – Digital twins
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Promises for the future – Digital twins
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Promises for the future – Digital twins

56© Sioux 2022 | Public

Environment model

Tesla control software

Hardware simulators

Test



Promises for the future – Digital twins
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Environment model

Tesla control software

Hardware simulators

Test

• Increase test coverage
• Identify operational profiles

• Statistics for risk analysis
• Identify behavior models



Promises for the future – Digital twins
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Environment model

Tesla control software

Hardware simulators

Test

Improve simulators based on
• Influence of wear and tear
• Environment circumstances

• Increase test coverage
• Identify operational profiles

• Statistics for risk analysis
• Identify behavior models



Promises for the future – Digital twins
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Environment model

Tesla control software

Hardware simulators

Test

Increase environment variations

Improve simulators based on
• Influence of wear and tear
• Environment circumstances

• Increase test coverage
• Identify operational profiles

• Statistics for risk analysis
• Identify behavior models



Promises for the future – Digital twins
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Environment model

Tesla control software

Hardware simulators

Test

Improve simulators based on
• Influence of wear and tear
• Environment circumstances

• Increase test coverage
• Identify operational profiles

• Statistics for risk analysis
• Identify behavior models

FIL: Field in the loop testing

Increase environment variations



Future? - Iterating in virtual space

§ Growing use of digital twins

§ Fully virtual target environment
§ Including autonomous driving
§ Other cars (V2V)
§ Weather conditions
§ Pedestrians / bikes
§ V2I communication
§ … V2X

§ Thousands of hours of driving, 
tested within seconds in CI/CD cycle

à Modeling the known
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The Magic Roundabout, Swindon, England



Future? – Use of machine learning

§ Autonomous driving should be able 
to handle the unknown

§ Improve virtual environment with 
data mining
§ Actual info from the field
§ E.g. Pedestrians / other cars not

behaving as expected
§ Identifying new unknown scenarios

à Modeling the unkown (and make it known)
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Erlkönig (Camouflaged prototype)
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Future? – Soon, this is not needed anymore…?
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Questions?

The Magic Roundabout, Swindon, England

bryan.bakker@sioux.eu
dirk.coppelmans@sioux.eu


